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Maximum entropy arguments in relativistic 
statistical mechanics 

K. A. JOHNS and P. T. LANDSBERG 
Department of Applied iMathematics and Mathematical Physics, University 
College, Cardiff 
MS.  received 2nd October 1969 

Abstract. The special relativistic statistical mechanics of systems of non- 
interacting particles is investigated by means of a maximum entropy argument. 
Particular attention is paid here to ensuring that the constraints required for 
this process satisfy the principle of covariance. The results of the preceding 
paper are used to determine the distribution of probabilities in any inertial 
frame of reference. Assuming an invariant entropy and using an entropy 
maximization technique, the probability distribution which is found differs 
from the usual one. This is discussed. 

1. Introduction 
The work of an earlier paper (Landsberg and Johns 1970) on the relative signi- 

ficance in special relativity of time-based and ensembled-based probability distribu- 
tions is here extended by considering certain effects of the Lorentz transformation 
of the time-based probabilities. In  4 2 of this paper a maximum entropy argument 
is considered, and the constraints to be applied in this procedure are formulated 
so that, in keeping with the principle of covariance, they apply equally in all inertial 
frames of reference. The  eighteen independent constraints which are found in this 
way are examined and interpreted in 5 3. 

The actual process of entropy maximization is undertaken in 5 4, using a statistical 
definition of entropy which ensures its Lorentz invariance and its compatibility with 
non-relativistic theory. The eighteen constraints produce eighteen Lagrange multi- 
pliers, which are evaluated in the inertial frame Io in which the system of interest is, 
on average, at rest. These multipliers are grouped into two four-vectors and one 
symmetric second-order tensor in a way that at once enables them to be transformed 
under a Lorentz transformation to another inertial frame of reference. An expression 
for the probability of occurrence, IIi, of a state i in a general inertial frame I is found, 
and in 4 5 a discussion is given of the fundamental points behind its deduction. In  
particular, the statistical and thermodynamic grounds for regarding entropy as 
Lorentz invariant are considered, and the conclusion is reached that the usual 
statistical arguments are unsound and could, with benefit, be discarded in favour of a 
single thermodynamic argument. 

2. Constraints for maximum entropy arguments in special relativistic 
statistical mechanics 
In  non-relativistic statistical mechanics, a well-known procedure used to determine 

the distribution over a set of discrete states of a system is to maximize the statistically 
defined entropy. In  doing this, certain constraints are applied. In  particular, for the 
grand canonical distribution, these constraints are 
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where II,, is a probability for the system to be in state i, and E t ,  and Ni, are respec- 
tively the energy and particle numbers of the system in that state, all quantities being 
judged in a frame I,. 

In  relativistic theory the principle of covariance demands that constraints apply 
equally in all frames of reference I (i.e. for all values of the velocity w which the 
frame I, has in I), though with appropriately transformed values for quantities 
which are not invariant. It is also necessary to put momentum on the same footing as 
energy, and demand that it also satisfy a constraining condition. We shall therefore 
introduce a tensorial notation in which the energy-momentum four-vector, {cPi, E,} 
is denoted by the symbol Pf. With this and other quantities the superfix p or v 
(taking values 1-4) denotes the tensorial component, and the suflix i denotes the state 
of the system; as before the suffix 0 indicates that the quantities to which it applies are 
measured in the frame I, in which the system is, on average, at rest. 

The constraints which are to apply in all frames of reference are therefore 

and 

p 1 = 1  
i 

2 nip'; = { C F ,  E )  

(4) 

I t  is, of course, impossible to apply these constraints simultaneously to each of an 
infinity of frames of reference. Therefore, for convenience, we seek to find a finite 
set of constraints applicable in one frame, which is exactly equivalent to (4), ( 5 )  and 
(6) applied in all frames. This can easily be done if these equations are re-expressed 
solely in terms of tensorial quantities, including four-vectors and scalars. In  particular, 
IIi should be rewritten (Landsberg and Johns 1970) 

Here w4 is the fourth component of the four-velocity w', which is equal to {yw, yc). 
Thus (4), (5) and (6) become 

4 

i 

10 --=--( C P ,  E ]  
i 

(9) 

Constraints (S), (9) and (10) apply equally for all frames of reference I. Ni and IT 
are, of course, Lorentz invariant and may equally well be written as Nio and R,,, 
but it is essential to retain IIi, and Pto in these equations. This will be discussed 
further in 5 5. In  the cases of (8) and (10) the only non-invariant quantities involved 
are the fourth components of the four-vectors Pf and w'. The linearity of the Lorentz 
transformation ensures that these equations hold in all frames if, and only if, similar 
constraints are applied to all fouy components in any one frame of reference (replace- 
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ment of superfix 4 in the numerator by p). Thus, for a single frame of reference only, 
two constraints (with eight independent components) are 

and 

By use of (7) ,  the dependence of these equations on IIio rather than ITi can be 
removed. Hence we have as the final form of the constraints (8) and (10) 

and 

Equation (9) involves a slightly different approach, since the quantities cP  and E 
do not form a four-vector in the case of a confined system (as defined in our earlier 
work, Landsberg and Johns 1967). However, energy and momentum densities do 
form components of the symmetric energy-momentum-stress tensor Tb”. In  partic- 
ular 

{ c P ,  E }  = TLL4V 

where V is the volume of the system in the general frame I. Since w4/c = y and 
V = V o / y ,  equation (9) becomes 

By the same reasoning as before, (15) holds for all frames of reference I if, and only if, 
a similar condition (e.g. (16) below) holds for all components of TU”. Thus in any 
one frame of reference only, there are ten further independent constraints given by 

D’ Dv 

or, using I1, instead of ITio, 

PpP; pi -- - T”V. 
t e& 

3. Interpretation of the constraints 
There are therefore eighteen independent constraints, given by equations (13), 

(14) and (17), which must be applied in any one inertial frame of reference to ensure 
that thefive constraints (4), (5) and (6) apply in all such frames. It is interesting to 
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see these results expressed in a non-tensorial form. For instance, (13) leads to 

2 IT, = 1, z‘ IT& = w 
1 a 

which ensure that the average of the velocity U , ,  of the system in frame I, is in fact 
equal to the velocity w of I, in I. Similarly (14) leads to 

2 rIaNa = m, z‘ rILUiAYi = wic’. 
z a 

The latter results appears to be new. From (17), with p or v equal to 4, we obtain 
familiar constraints on energy and momentum, namely 

and 
i 

The other six independent components of (17) involve the stresses in the system, and 
are in general best expressed by equation (17) itself. Only for a homogeneous 
isotropic system, considered in frame I,, do they take an interesting and simplified 
form : 

Since Pi;”,/Pf, is equal to the p-component of the velocity in I, of the system in state i, 
this result is in fact the familiar statistical expression for the pressure p .  The zero 
for p f v indicates that no lateral stresses exist in an isotropic system. 

4. Entropy maximization 
The conventional non-relativistic expression for the entropy S is 

It is clear from (7) that in general any attempt to replace ITio by ITi in this equation 
will not only destroy the Lorentz invariance of S,  but will replace it with a trans- 
formation entirely different from the formal Lorentz transformations of tensors and 
four-vectors. Therefore, we use the fact that I, is in this instance a preferred frame 
of reference, and define the entropy in all frames by equation (18). Now, before S 
can be maximized over all probabilities Die, it is necessary to express the appropriate 
constraints (13), (14) and (17) in the variables of I,. Thus they become 

P,”, w; 2 IT,,; = - = (0 ,  0 ,  0 ,  l} 
i Pi0 WO“ 

and 
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We may now introduce Lagrange multipliers xg and ,&, which have four 
components, and rbv which is symmetric in p and v, and thus has ten independent 
components. By means of the usual arguments, we find at once for the equilibrium 
distribution 

(Summations are made over the repeated superscripts p, v, using the special relativity 
metric with signature - 2.) 

From equations (18)-(22), S may be expressed as 

(23 ) 
uv uv S = k ( l + r : + p ~ m O + ~ o  To Vo). 

The Lagrange multipliers may be readily identified if the system is assumed to be 
isotropic. From rejections of spatial-coordinate axes, 

and 

77Y = -77Y (v # p). 
Thus 

(v f P). 
ILV  

770 = o  
Similarly, by rotations of these axes, 

11 22 33 
770 = 770 = 770 * 

Since the system is now assumed isotropic in frame Io, TgV reduces to a diagonal 
form, with elements given by 

11 22 33 T 0 = T  0 = T  0 = p  
and 

44 To = Eo/Vo.  
By use of these results, and also (23), (25) and (26), the expression for S becomes 

s = k( 1 + Kt +,&170 -k 3$,$~0 f 77Eo) .  (27) 
The  remaining unidentified multipliers can be determined if (27) is compared with 
the familiar thermodynamic expression for the entropy, 

1 

TO 
s = -(-poNo+pV,+Eo) 

where To  is the temperature and po the chemical potential in Io. Thus 

4 4 PO 
KO = -1, po = 

11 22 33 1 4 4  1 
k To 

770 = T o  = 770 = - 
3kTo’ ’ O  =----’ 



126 K. A. Johns and P. T.  Landsberg 

Thus the Lagrange multipliers are 

CL: = ( O , O ,  0 ,  - I}  

p:: = ( o , o ,  0 ,  - - 
k TO 1 

and 7 :  has diagonal elements 
1 1 1 

j3kc’ jkT,’ E’ ‘i kT, 
with all off-diagonal elements being zero. I t  is now only necessary to apply a Lorentz 
transformation from I, to another frame I to obtain coefficients cP, p’ and quv  in any 
desired coordinate system. Transforming Pf, to Pf in the same way, the exponent in 
equation (22) remains invariant, and with the use of (7) the final expression for the 
probability rI, appropriate to frame I becomes 

5 .  Discussion 
Two points are worth making about these results. The first is the peculiar status 

of the fourth (i.e. time) coordinate of the various four-vectors involved. This is 
easily understood since the whole theory described here is formed from time-based, 
rather than space-based, probabilities. The second point is the preference given to 
the frame I,, in that P$, rather than Pp’ appears in the denominators in (29). A s  
already mentioned, this arises because I, was used in equation (18) for the definition 
of S in order that this work be consistent with non-relativistic theory, and with the 
Lorentz invariance of entropy. It is notable, however, that this invariance had to be 
introduced into these calculations, and did not arise from them. It cannot, therefore, 
be said that the work presented here in any way supports the argument that the 
Lorentz invariance of entropy can be proved by statistical means. 

This view, as given by von Mosengeil (1907) has already been criticized by van 
Kampen (1969). As was shown earlier (Landsberg and Johns 1970, 9 3), Lorentz- 
invariant single-ensemble-based probabilities are not in general compatible with 
time-based probabilities. We have shown here that the use of the latter does not 
automatically bring about the Lorentz invariance of entropy, which was introduced 
into our argument as a postulate. The  desired proof of its invariance can already be 
obtained from thermodynamics, if one assumes that the gradual acceleration of a 
system from one inertial frame to another is a reversible process which cannot alter the 
value ascribed to the entropy by any observer. Thus our assumption of equation (18) 
as a dejinition of the entropy, and the special status thus given to frame I,, appear as 
perfectly natural procedures. 

We have earlier shown (Landsberg and Johns 1970, 9 3) that the Lorentz trans- 
formations of the mean energy and momentum of an inclusive system (as defined by 
Landsberg and Johns 1967) are derivable from the probability transformation (7) 
by putting U,, permanently equal to zero (i.e. uio = 0 for all i). This, however, consti- 
tutes no proof that one must put uio = 0 in equation (30) (which applies to confined 
systems) in order to obtain the probabilities II, for inclusive systems. Indeed, this 
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procedure would be in contradiction to the fact that it is really the same physical 
entity in the same state i which is being considered. Clearly then, one or other of the 
possible forms of IIi must be discarded. Since the constraints on the motion of the 
whole system which give rise to the disputed term (iui0 . Pia), are valid even when, in the 
inclusive case, only the external behaviour of the system is considered, it is evident 
that it is erroneous to put uio equal to zero in this case. We therefore have in equa- 
tion (30) a new and general expression apparently applicable to both types of system. 

It is interesting to compare this result with that obtained earlier (Landsberg and 
Johns 1967). The arguments given there are effectively based on an ensemble, or 
‘best estimate’, approach and thus use Lorentz invariant probabilities and a smaller 
number of constraints. The  probability I I t  obtained in that paper therefore lacks the 
extra term in the exponent, as do the expressions obtained by other authors (e.g. B ~ r s  
1965, Pathria 1966), and may perhaps be described as conventional. 

The extra term arises in the same form for a canonical ensemble. It clearly leads 
to discrepancies with many accepted formulae ; yet it results from accepted relativistic 
principles. In  particular, it is based on: 

(i) The  relativistic transformations which gave rise to the transformation ( 7 )  in 
the preceding paper. 

(ii) The  principle of covariance as applied to the constraints in 5 2 of this paper. 
I n  addition, it is based on an ad hoc assumption which has not been fully integrated 
with relativity theory. 

(iii) Entropy is Lorentz invariant and its maximization leads to equilibrium 
distributions. 

Our considerations therefore seem to cast doubt on at least one of these assump- 
tions. 
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